
Lecture 18
Spring 2003

Department of Computer Science
University of Alabama

CS603 Programming
Language Organization

Provide you with some familiarity with ML.
In particular, you should be able to:

Know how to use the immediate mode to
perform simple calculations

Know how to load your own source files

Know how to use pattern matching in your
functions

Know how to debug type errors

Objectives

Develop by Robert Milner circa 1975 for
theorem proving.

Began as a meta language (Logic of
Computable Functions, LCF), and evolved into
a full programming language.

ML is a strongly typed functional language.

Type checking is done by inferring types.

Statically Type-checked

ML is polymorphic.

ML

int: 3, 4, 5, ~3, ~4, etc -- type int

real: 3.14, 3.56, 0.03 -- type real

bool: true, false -- type bool

string: “foo”, “boo” -- type string

list: a sequence of homogeneous objects, [2,3,4] -- type int list,
[“foo”, “bar”] - type string list

tuple: a sequence of heterogeneous objects (abc ,3,true) --
type string * int * bool

function: fn (x, y) => x -- type int * int -> int, (or type int * real
-> int, or type τ1 * τ2 -> τ1

Data Types in ML

Variable definition:

val <var> = <expr>;

arithmetic operations are infix --

4-x

9*(y+4)

if expression:

if <expr> then <expr> else

<expr>

let expression:

let val x=3 val y=(3*5) in x*y;

Syntax of ML

Immediate mode statements must be
terminated by a semicolon (;)

The result is placed in the special variable it

Notice the type inference!

Moscow ML version 2.00 (June 2000)

Enter ’quit();’ to quit.

- 34 + 8;

> val it = 42 : int

- it - 20;

> val it = 22 : int

Starting SML
Immediate Mode

Here is the Standard First Program

The unit type is like void in C/C++; it
represents commands.

- print "Hello, World!\n\n";

Hello, World!

> val it = () : unit

-

Hello, World

Some Simple Types
- 20.3;

> val it = 20.3 : real

- ~27

> val it = ~27 : int

- "Hi";

> val it = "Hi" : string

- (3, "x");

> val it = (3,"x") : int * string

-

The List Type
> val it = [2.5,3.9,4.2] : real list

- hd it;

> val it = 2.5 : real

- 3 :: [2, 4];

> val it = [3,2,4] : int list

- tl it;

> val it = [2,4] : int list

- nil;

> val it = [] : 'a list

The 'a list means “a list of an arbitrary type
a,” or just “a list of a's”.

List Manipulators
null -- test whether a list is empty

hd -- return the first element of a list

tl -- return the list consisting of everything
but the first element of its argument

:: -- x::xs is a list like xs but with x added at
the beginning

@ -- infix append - join two lists together.
(E.g. [x]@xs is the same thing as x::xs.)

More about List Types
Unlike tuples, all the elements of a list must
have the same type.

- [3, 8.4];

! Toplevel input:

! [3, 8.4];

! ^^^

! Type clash: expression of type

! real

! cannot have type

! int

-

Variables

- val x = 20;

> val x = 20 : int

- x + 10;

> val it = 30 : int

- val x = 30;

> val x = 30 : int

- val y = 40 and s = "hi";

> val y = 40 : int

 val s = "hi" : string

Functions
fun name parameters = body ;

- fun f x = x + 4;

> val f = fn : int -> int

- fun g x y = [x,y];

> val g = fn : 'a -> 'a -> 'a list

- f 30; (* Functions are applied

by juxtaposition! *)

> val it = 34 : int

- g 20 5;

> val it = [20,5] : int list

Errors
- fun f x = x + 4;

> val f = fn : int -> int

- f 6.3;

! Toplevel input:

! f 6.3;

! ^^^

! Type clash: expression of type

! real

! cannot have type

! int

-

More Errors
- fun g x y = [x,y];

> val g = fn : 'a -> 'a -> 'a list

- g "hi" 4.3;

! Toplevel input:

! g "hi" 4.3;

! ^^^

! Type clash: expression of type

! real

! cannot have type

! string

-Always always ask ``what are the types?''!

That habit will save you a lot of time!

Recursive Functions

- fun f n =

 if (n = 0)

 then 1

 else 1 + (f (n - 1));

> val f = fn : int -> int

- f 10;

> val it = 11 : int

-

Function Definition
Syntax:

val [rec] <name> = fn <tuple> => <expr>

fun <name> <arg-pat> = <expr1> | …

Examples

val identity = fn x => x

val rec fact = fn x => if x <= 1

then 1

else x * (fact (x - 1));

fun fact x = if x <= 1 then 1

else x * (fact (x - 1));

equivalent

Function Application
Syntax:

f (a, b, c) -- equivalent to same call
in C.

f a b c -- equivalent to (((f a) b) c)
(called curried form)

Function application associates to the left.

Use parentheses if you want to change the
association.

Pattern Matching
- fun f 0 = 1

 | f n = 1 + f (n-1);

> val f = fn : int -> int

- f 10;

> val it = 11 : int

-

Notice the similarity to a mathematical
definition.

Pattern Matching II
Function f takes a tuple as its argument.

Function g takes two arguments. Don't
confuse them!

- fun f (a,b) = a + b;

> val f = fn : int * int -> int

- f (10,30);

> val it = 40 : int

- fun g a b = a + b;

> val g = fn : int -> int -> int

- g 10 20;

> val it = 30 : int

-

Pattern Matching III
- fun f [] = 0

 | f (x::xs) = 1 + (f xs);

> val f = fn : 'a list -> int

- f [10,20,30,40];

> val it = 4 : int

-

Can you explain what this function is doing?
What is the type of x? What is the type of
xs?

Mystery 1
- fun f 0 = 0

 | f 1 = 1

 | f n = f (n-1) + f (n-2);

> val f = fn : int -> int

- (f 3, f 5, f 8);

> val it = (2,5,21) : int * int *

int

Mystery 2
- fun f [] = 0

 | f (x::xs) = x + f xs;

> val f = fn : int list -> int

- f [10,10,10,12];

> val it = 42 : int

-

Mystery 3

- fun f [] = []

 | f (x::xs) =

 if (x < 5)

 then f xs

 else x :: f xs;

> val f = fn : int list -> int list

- f [1,5,10,3,4,48];

> val it = [5,10,48] : int list

-

Mystery 4
- fun f 0 a = []

 | f n a = a :: (f (n-1) (a-1));

> val f = fn : int -> int -> int list

- f 6;

> val it = fn : int -> int list

- it 10;

> val it = [10,9,8,7,6,5] : int

list

-

Bonus!

Higher Order Functions!

- fun twice f x = f (f x);

> val twice = fn : ('a -> 'a) -> 'a -> 'a

- fun inc n = n + 1;

> val inc = fn : int -> int

- twice inc 20;

> val it = 22 : int

-

One more thing....

- use "myprogram.sml";

Immediate mode is fun, but it can be
counter-productive....

Recursion in ML

In functional languages, repetition is
accomplished by recursion.

fun gcd m n =

 if m = n then m

 else if m < n then gcd m (n % m)

 else gcd n m;

Lists

Recursive data structure:

A t list (a list whose elements are of
type t) is either empty or a t joined to a
t list.

If L = x joined to M, then x is the head of L
and M is the tail of L

Lists in ML
Constants:

[1,2,3]: int list

[true, false]: bool list

Operations:

hd [1,2,3] = 1

tl [1,2,3] = [2,3]

null [] = true

null [1,2] = false

1::[2,3] = [1,2,3]

Types of ML lists and operations
Lists can contain other lists, but are homogeneous.

[[1,2], [], [4,5,2]]: (int list) list

But [1, [2,3]] is not legal.

List operations have polymorphic types:

hd: a list -> a

tl: a list -> a list

:: : a * a list -> a list

null: a list -> bool

Simple examples
fun tltl L = (tl (tl L));

fun hdtl L = hd (tl L);

fun incrhd L = (1+(hd L))::(tl L);

fun swaphd L =

 (hdtl L) :: (hd L) :: (tltl L);

fun length L = if null L then 0

 else 1+(length (tl L));

fun append L M = if null L then M

 else (hd L)::(append (tl L) M);

fun concat L M = if null L then L

 else (append (hd L) M);

Pattern-matching in
function definitions
fun f [] = ...

 | f (x::xs) = ...x...(f xs)...

fun f [] M = ...M...

 | f L [] = ...L...

 | f (x::xs) (y::ys) =

 ...x...y...(f xs ys)...

fun f [] = ...

 | f [x] = ...x...

 | f (x::y::xs) =

 ...x...y...(f (y::xs))...

Example: merge sort
fun msort L =

let val halves = split L

in merge (msort (hd halves))

 (msort (hdtl halves))

end

fun split [] = [[], []]

 | split [a] = [[a], []]

 | split (a::b::t) =

 let val splittltl = split t

 in [a::(hd splittltl),

 b::(hdtl splittltl)]

 end;

datatype 'a tree = Empty

 | Node of 'a tree * 'a * 'a tree

fun height Empty = 0

 | height (Node (lft, _, rht)) = 1 + max (height lft, height rht)

Algebraic Data-types

“Programming in Standard ML”

http://www-2.cs.cmu.edu/~rwh/smlbook/
offline.pdf

Source code from above book

http://www-2.cs.cmu.edu/~rwh/smlbook/
examples/

Moscow ML

http://www.dina.dk/~setsoft/mosml.html

Resources

