

©2005 Joel Jones

CS 603: Programming
Language Organization

Lecture 2
Spring 2005

Department of Computer Science
University of Alabama

Joel Jones

 ©2005 Joel Jones

Outline

• Questions
• Impcore Examples
• Operational Semantics
• Reading for next time

 ©2005 Joel Jones

LISP-like Syntax

toplevel ::= exp
 | (use file-name)
 | (val variable-name exp)
 | (define function-name
 (formals) exp)
exp ::= value
 | variable-name
 | (set variable-name exp)
 | (if exp exp exp)
 | (while exp exp)
 | (begin exp exp)
 | (function {exp})
formals ::= {variable-name}
value ::= integer
function ::= function-name
 | primitive
primitive ::= + | - | * | / | = | < | > |
 | print

integer ::= sequence of digits, possibly
 prefixed with a plus or minus
 sign
*-name ::= sequence of characters not
 an integer and not
 containing (,), ;, or
 whitespace

 ©2005 Joel Jones

Impcore Examples

• (mult m n) - multiply m by n without
using “*”

• (sumsquares n) - 1^2 + 2^2 +…+ n^2

Pair Up:
• Put up solution to mult and sumsquares on the board

 ©2005 Joel Jones

Environments

• Set of mappings from names to values (or
meanings)

• Operations on environments
– Lookup–given name, return value: ρ(x)

ρ - environment
x - name

– Extend–given name and value, add to
mappings: ρ{x ↦v}
• v - value

 ©2005 Joel Jones

Specifying Meaning

• Operational Semantics
– Mapping from AST (or other abstraction

representation) to meaning, in terms of
primitives

– Mechanics involve state and transitions from
state to state, involving inference,
environments, sets, etc. which define a virtual
machine

• Interpreters
– Given operational semantics, interpreters can

be derived, almost (but not quite!)
mechanically

 ©2005 Joel Jones

Judgements and Rules of
Inference

• Transition rules of virtual machine are
written in the form of judgments

• A judgment is a relation, not a function,
which implies that non-deterministic
evaluations are possible.

• A judgment consists of premises and a
conclusion

• A judgment holds only if all of the premises
are true

 ©2005 Joel Jones

Operational Semantics of
Impcore (State)

• Four parts to state
– Toplevel t or expression e being evaluated

(matches on AST tags)
– Value environment holding values of global

variables, ξ
– Function definition environment, φ
– Value environment holding formal parameters,
ρ

 ©2005 Joel Jones

Operational Semantics of
Impcore (Judgements)

• State when evaluating judgments for toplevel: ‹t,
ξ, φ›

• State when evaluating judgments for expression:
‹e, ξ, φ, ρ›

• State between evaluations of toplevel:

Pair Up:
• How many elements to state tuple?
• What contents? Why?

• ‹ξ, φ›

