

©2005 Joel Jones

CS 603: Programming
Language Organization

Lecture 1
Spring 2005

Department of Computer Science
University of Alabama

Joel Jones

 ©2005 Joel Jones

Outline

• Prerequisites
• Personal Information
• Motivation
• ImpCore

 ©2005 Joel Jones

Prerequisites

• Knowledge of several different
programming languages

• At least one non-imperative

 ©2005 Joel Jones

Teaming and Active Learning

• Active Participation in Classroom
– Questioning
– Preparation
– Working in Pairs
– Reporting

 ©2005 Joel Jones

Why Study Weird
Programming Languages?

• Why don’t you tell me?

Pair Up:
• Why study weird programming languages?
• Why are you taking this class?

 ©2005 Joel Jones

Languages and their
Paradigms

• Brainstorm—name as many programming
languages as you can.
– LISP, Scheme, CLOS, Python, APL, C, C++,

Smalltalk, Ruby, Perl, AWK, COBOL, FORTRAN,
AWK, Pascal, AppleScript, Visual Basic, BASIC, Java,
Prolog, CLP, SML, Haskell, etc.

• Brainstorm—what “paradigms” or “kinds” of
languages are these?
– functional (applicative), object-oriented, imperative,

scripting, logic programming

 ©2005 Joel Jones

 Name:

Programming Languages/Environments:

Group Work Experience:

What you expect of the class:

Personal Information

Email:

Laptop?

 ©2005 Joel Jones

Name: Joel Jones

Programming Languages/Environments:C, C++, Java,

Smalltalk on Macintosh, Unix, VMS

Group Work Experience:Industry experience for DP,
scheduling, OS, and compilers

What you expect of the class:Preparation, Participation,
Perception

My Personal Information

Email:jones@cs.ua.edu

 ©2005 Joel Jones

What is the Simplest Possible
Language?

• Simple Syntax
• Few Primitives

 ©2005 Joel Jones

ImpCore Language

• Two kinds of expressions
– Function definitions:

• (define double (x) (+ x x))
– Expressions:

• (double 5)

• Environment is interactive/interpreted

 ©2005 Joel Jones

ImpCore Language

• Four kinds of elements at top-level
– Expressions:

• (double 5)
– Function definitions:

• (define double (x) (+ x x))
– Variable definitions

• (val x 5)
– Source Import

• (use double.imp)

• Environment is interactive/interpreted

 ©2005 Joel Jones

LISP-like Syntax

toplevel ::= exp
 | (use file-name)
 | (val variable-name exp)
 | (define function-name
 (formals) exp)
exp ::= value
 | variable-name
 | (set variable-name exp)
 | (if exp exp exp)
 | (while exp exp)
 | (begin exp exp)
 | (function {exp})
formals ::= {variable-name}
value ::= integer
function ::= function-name
 | primitive
primitive ::= + | - | * | / | = | < | > |
 | print

integer ::= sequence of digits, possibly
 prefixed with a plus or minus
 sign
*-name ::= sequence of characters not
 an integer and not
 containing (,), ;, or
 whitespace

